12th Italian Information Retrieval Workshop 2022
Informal proceedings of the 12th Italian Information Retrieval Workshop 2022 Milan, Italy, June 29-30, 2022. Official proceedings are published online by CEUR Workshop Proceedings (CEUR-WS.org, ISSN 1613-0073)
Edited by:
Gabriella Pasi (1)
Paolo Cremonesi (2)
Salvatore Orlando (3)
Markus Zanker (4) (5)
David Massimo (4)
Gloria Turati (2)
(1) Università di Milano-Bicocca, Dipartimento di Informatica, Sistemistica e Comunicazione, Milano, Italy
(2) Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria, Milano Italy, Italy
(3) Università Ca’ Foscari Venezia, Dipartimento di Scienze Ambientali, Informatica e Statistica , Venezia, Italy
(4) Free University of Bozen-Bolzano, Faculty of Computer Science, Bolzano, Italy
(5) University of Klagenfurt, Institute of Artificial Intelligence and Cybersecurity, Klagenfurt, Austria
Table of Contents
Preface
Invited Talks:
-
Pseudo-Relevance Feedback in the Era of Dense Retrieval
Nicola Tonellotto -
From Implicit Data to Cognitive Models for Recommender Systems
Marko Tkalcic
Accepted Papers:
-
A Modular Approach to Topic Modeling for Heterogeneous Documents
Giovanni Toto, Emanuele Di Buccio -
Addressing Privacy in Recommender Systems with Federated Learning
Vito Walter Anelli, Tommaso Di Noia, Eugenio Di Sciascio, Antonio Ferrara, Alberto Carlo Maria Mancino -
AI-based Decision Support Systems for the Management of E-rocurement Procedures
Pasquale Lops, Marco Di Ciano, Nicola Lopane, Lucia Siciliani, Vincenzo Taccardi, Eleonora Ghizzota, Giovanni Semeraro -
An Analysis of Local Explanation with LIME-RS
Vito Walter Anelli, Alejandro Bellogín, Tommaso Di Noia, Francesco Maria Donini, Vincenzo Paparella, Claudio Pomo -
An Analysis of User Click Behaviour in Online Hotel Search
Emanuele Cavenaghi, Lorenzo Camaione, Paolo Minasi, Gabriele Sottocornola, Fabio Stella, Markus Zanker -
Assessing the Semantic Difficulty of Queries
Guglielmo Faggioli, Stefano Marchesin -
Choice Models for Simulating the Consumption of Recommendations
Naieme Hazrati, Francesco Ricci -
Comparing ANOVA Approaches to Detect Significantly Different IR Systems
Guglielmo Faggioli, Nicola Ferro -
Evaluating Recommendations in a User Interface With Multiple Carousels
Maurizio Ferrari Dacrema, Nicolò Felicioni, Paolo Cremonesi -
Feature Selection via Quantum Annealers for Ranking and Classification Tasks
Maurizio Ferrari Dacrema, Fabio Moroni, Riccardo Nembrini, Nicola Ferro, Guglielmo Faggioli, Paolo Cremonesi -
Group Dynamic and Group Recommender Systems for Decision Support
Hanif Emamgholizadeh, Francesco Ricci -
Learning to Rank from Relevance Judgments Distributions
Alberto Purpura, Gianmaria Silvello, Gian Antonio Susto -
Inverse Reinforcement Learning and Point of Interest Recommendations
David Massimo, Francesco Ricci -
Recency, Popularity, and Diversity of Explanations in Knowledge-based Recommendation
Giacomo Balloccu, Ludovico Boratto, Gianni Fenu, Mirko Marras -
Replication of Collaborative Filtering Generative Adversarial Networks on Recommender Systems
Fernando Benjamín Pérez Maurera, Maurizio Ferrari Dacrema, Paolo Cremonesi -
Replication of Recommender Systems with Impressions
Fernando Benjamín Pérez Maurera, Maurizio Ferrari Dacrema, Paolo Cremonesi -
Revisiting Retrieval-based Approaches for Conversational Recommender Systems
Ahtsham Manzoor, Dietmar Jannach -
Sustainability driven Recommender Systems
Pavel Merinov, David Massimo, Francesco Ricci -
Towards an Information Retrieval Evaluation Library
Elias Bassani
Extended Abstracts:
-
A Comprehensive Dataset for Modern Learning to Rank Solutions (Abstract)
Domenico Dato, Sean MacAvaney, Franco Maria Nardini, Raffaele Perego, Nicola Tonellotto -
Energy-Efficient Ranking on FPGAs through Ensemble Model Compression (Abstract)
Veronica Gil-Costa, Fernando Loor, Romina Molina, Franco Maria Nardini, Raffaele Perego, Salvatore Trani -
Interpretable Ranking Using LambdaMART (Abstract)
Claudio Lucchese, Franco Maria Nardini, Salvatore Orlando, Raffaele Perego, Alberto Veneri -
SOUR an Outliers Detection Algorithm in Learning to Rank (Abstract)
Federico Marcuzzi, Claudio Lucchese, Salvatore Orlando